Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Near-field coupling is a fundamental physical effect, which plays an important role in the establishment of classical analog of electromagnetically induced transparency (EIT). However, in a normal environment the coupling length between the bright and dark artificial atoms is very short and far less than one wavelength, owing to the exponentially decaying property of near fields. In this work, we report the realization of a long range EIT, by using a hyperbolic metamaterial (HMM) which can convert the near fields into high-k propagating waves to overcome the problem of weak coupling at long distance. Both simulation and experiment show that the coupling length can be enhanced by nearly two orders of magnitude with the aid of a HMM. This long range EIT might be very useful in a variety of applications including sensors, detectors, switch, long-range energy transfer, etc.