Disruption of blood meal-responsive serpins prevents Ixodes scapularis from feeding to repletion. Academic Article uri icon

abstract

  • Serine protease inhibitors (serpins) are thought to mediate the tick's evasion of the host's serine protease-mediated defense pathways such as inflammation and blood clotting. This study describes characterization and target validation of 11 blood meal-responsive serpins that are associated with nymph and adult Ixodes scapularis tick feeding as revealed by quantitative (q)RT-PCR and RNAi silencing analyses. Given the high number of targets, we used combinatorial (co) RNAi silencing to disrupt candidate serpins in two groups (G): seven highly identical and four non-identical serpins based on amino acid identities, here after called GI and GII respectively. We show that injection of both GI and GII co-dsRNA into unfed nymph and adult I. scapularis ticks triggered suppression of cognate serpin mRNA. We show that disruption of GII, but not GI serpins significantly reduced feeding efficiency of both nymph and adult I. scapularis ticks. Knockdown of GII serpin transcripts caused significant respective mortalities of 40 and 71% of nymphal and adult ticks that occurred within 24-48h of attachment. This is significant, as the observed lethality preceded the tick feeding period when transmission of tick borne pathogens is predominant. We suspect that some of the GII serpins (S9, S17, S19 and S32) play roles in the tick detachment process in that upon detachment, mouthparts of GII co-dsRNA injected were covered with a whitish gel-like tissue that could be the tick cement cone. Normally, ticks do not retain tissue on their mouthparts upon detachment. Furthermore, disruption of GII serpins reduced tick blood meal sizes and the adult tick's ability to convert the blood meal to eggs. We discuss our data with reference to tick feeding physiology and conclude that some of the GII serpins are potential targets for anti-tick vaccine development.

published proceedings

  • Ticks Tick Borne Dis

altmetric score

  • 0.25

author list (cited authors)

  • Bakshi, M., Kim, T. K., & Mulenga, A.

citation count

  • 12

complete list of authors

  • Bakshi, Mariam||Kim, Tae Kwon||Mulenga, Albert

publication date

  • March 2018