Centennial record of anthropogenic impacts in Galveston Bay: Evidence from trace metals (Hg, Pb, Ni, Zn) and lignin oxidation products.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
During the 20th century the impacts of industrialization and urbanization in Galveston Bay resulted in significant shifts in trace metals (Hg, Pb, Ni, Zn) and vascular plant biomarkers (lignin phenols) recorded within the surface sediments and sediment cores profile. A total of 22 sediment cores were collected in Galveston Bay in order to reconstruct the historical input of Hg, Pb, Ni, Zn and terrestrial organic matter. Total Hg (T-Hg) concentration ranged between 6 and 162ngg-1 in surface sediments, and showed decreasing concentrations southward from the Houston Ship Channel (HSC) toward the open estuary. Core profiles of T-Hg and trace metals (Ni, Zn) showed substantial inputs starting in 1905, with peak concentrations between 1960 and 1970's, and decreasing thereafter with exception to Pb, which peaked around 1930-1940s. Stable carbon isotopes and lignin phenols showed an increasing input of terrestrial organic matter driven by urban development within the watershed in the early 1940s. Both the enrichment factor and the geoaccumulation index (Igeo) for T-Hg as a measure of the effectiveness of environmental management practices showed substantial improvements since the 1970s. The natural recovery rate in Galveston Bay since the peak input of T-Hg was non-linear and displayed a slow recovery during the twenty-first century.