Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars. Academic Article uri icon

abstract

  • The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were ~29 where grainflows were present and ~33 where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50m and 350m with an intermediate axis mean size of 113m (median: 103m). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12cm and 28cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.

published proceedings

  • J Geophys Res Planets

altmetric score

  • 71.48

author list (cited authors)

  • Ewing, R. C., Lapotre, M., Lewis, K. W., Day, M., Stein, N., Rubin, D. M., ... Fischer, W. W.

citation count

  • 74

complete list of authors

  • Ewing, RC||Lapotre, MGA||Lewis, KW||Day, M||Stein, N||Rubin, DM||Sullivan, R||Banham, S||Lamb, MP||Bridges, NT||Gupta, S||Fischer, WW

publication date

  • December 2017