Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive? Academic Article uri icon

abstract

  • To elucidate the role of vinylene carbonate (VC) as a solvent additive in organic polar solutions for lithium-ion batteries, reductive decompositions for vinylene carbonate (VC) and ethylene carbonate (EC) molecules have been comprehensively investigated both in the gas phase and in solution by means of density functional theory calculations. The salt and solvent effects are incorporated with the clusters (EC)nLi+(VC) (n = 0-3), and further corrections that account for bulk solvent effects are added using the polarized continuum model (PCM). The electron affinities of (EC)nLi+(VC) (n = 0-3) monotonically decrease when the number of EC molecules increases; a sharp decrease of about 20.0 kcal/mol is found from n = 0 to 1 and a more gentle variation for n > 1. For (EC)nLi+(VC) (n = 1-3), the reduction of VC brings about more stable ion-pair intermediates than those due to reduction of the EC molecule by 3.1, 6.1, and 5.3 kcal/mol, respectively. This finding qualitatively agrees with the experimental fact that the reduction potential of VC in the presence of Li salt is more negative than that of EC. The calculated reduction potentials corresponding to radical anion formation are close to the experimental potentials determined with cyclic voltammetry on a gold electrode surface (-2.67, -3.19 eV on the physical scale for VC and EC respectively vs experimental values -2.96 and -2.94 eV). Regarding the decomposition mechanisms, the VC and EC moieties undergo homolytic ring opening from their respective reduction intermediates, and the energy barrier of VC is about one time higher than that of EC (e.g., 20.1 vs 8.8 kcal/mol for (EC)2Li+(VC)); both are weakly affected by the explicit solvent molecules and by a bulk solvent represented by a continuum model. Alternatively, starting from the VC-reduction intermediate, the ring opening of the EC moiety via an intramolecular electron-transfer transition state has also been located; its barrier lies between those of EC and VC (e.g., 17.2 kcal/mol for (EC)2Li+(VC)). On the basis of these results, we suggest the following explanation about the role that VC may play as additive in EC-based lithium-ion battery electrolytes; VC is initially reduced to a more stable intermediate than that from EC reduction. One possibility then is that the reduced VC decomposes to form a radical anion via a barrier of about 20 kcal/mol, which undergoes a series of reactions to give rise to more active film-forming products than those resulting from EC reduction, such as lithium divinylene dicarbonate, Li-C carbides, lithium vinylene dicarbonate, R-O-Li compound, and even oligomers with repeated vinylene and carbonate-vinylene units. Another possibility starting from the VC-reduction intermediate is that the ring opening occurs on the unreduced EC moiety instead of being on the reduced VC, via an intramolecular electron transfer transition state, the energy barrier of which is lower than that of the former, in which VC just helps the intermediate formation and is not consumed. The factors that determine the additive functioning mechanism are briefly discussed, and consequently a general rule for the selection of electrolyte additive is proposed.

published proceedings

  • J Am Chem Soc

author list (cited authors)

  • Wang, Y., Nakamura, S., Tasaki, K., & Balbuena, P. B.

citation count

  • 232

complete list of authors

  • Wang, Yixuan||Nakamura, Shinichiro||Tasaki, Ken||Balbuena, Perla B

publication date

  • April 2002