Electron paramagnetic and electron nuclear double resonance of the hydrogen peroxide compound of cytochrome c peroxidase.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We have collected electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectra from the hydrogen peroxide compound of yeast cytochrome c peroxidase, termed ES, employing EPR microwave frequencies of 9.6 and 11.6 GHz. We have measured and analyzed the temperature dependence of the spin-lattice relaxation rate (1/T1) of the paramagnetic center of ES over the temperature range 1.9 to 4 K. In addition, an upper bound to exchange coupling between the ferryl heme and EPR-visible centers of ES has been calculated and expressions for the dipolar interaction between a ferryl heme and a free radical have been derived. These results all confirm that the EPR signal of ES is not associated with an aromatic amino acid radical, and in particular not with a tryptophanyl radical. This conclusion has led us to consider an explanation of the EPR signal in terms of a nucleophilically stabilized methionyl radical.