Kinetic isotope effects on the rate-limiting step of heme oxygenase catalysis indicate concerted proton transfer/heme hydroxylation. Academic Article uri icon

abstract

  • Heme oxygenase (HO) catalyzes the O2 and NADPH/cytochrome P450 reductase-dependent conversion of heme to biliverdin, free iron ion, and CO through a process in which the heme participates as both dioxygen-activating prosthetic group and substrate. We earlier confirmed that the first step of HO catalysis is a monooxygenation in which the addition of one electron and two protons to the HO oxy-ferroheme produces ferric-alpha-meso-hydroxyheme (h). Cryoreduction/EPR and ENDOR measurements further showed that hydroperoxo-ferri-HO converts directly to h in a single kinetic step without formation of a Compound I. We here report details of that rate-limiting step. One-electron 77 K cryoreduction of human oxy-HO and annealing at 200 K generates a structurally relaxed hydroperoxo-ferri-HO species, denoted R. We here report the cryoreduction/annealing experiments that directly measure solvent and secondary kinetic isotope effects (KIEs) of the rate-limiting R --> h conversion, using enzyme prepared with meso-deuterated heme and in H2O/D2O buffers to measure the solvent KIE (solv-KIE), and the secondary KIE (sec-KIE) associated with the conversion. This approach is unique in that KIEs measured by monitoring the rate-limiting step are not susceptible to masking by KIEs of other processes, and these results represent the first direct measurement of the KIEs of product formation by a kinetically competent reaction intermediate in any dioxygen-activating heme enzyme.The observation of both solv-KIE(298) = 1.8 and sec-KIE(298) = 0.8 (inverse) indicates that the rate-limiting step for formation of h by HO is a concerted process: proton transfer to the hydroperoxo-ferri-heme through the distal-pocket H-bond network, likely from a carboxyl group acting as a general acid catalyst, occurring in synchrony with bond formation between the terminal hydroperoxo-oxygen atom and the alpha-meso carbon to form a tetrahedral hydroxylated-heme intermediate. Subsequent rearrangement and loss of H2O then generates h.

published proceedings

  • J Am Chem Soc

author list (cited authors)

  • Davydov, R., Matsui, T., Fujii, H., Ikeda-Saito, M., & Hoffman, B. M

citation count

  • 65

complete list of authors

  • Davydov, Roman||Matsui, Toshitaka||Fujii, Hiroshi||Ikeda-Saito, Masao||Hoffman, Brian M

publication date

  • December 2003