ENDOR studies of the ligation and structure of the non-heme iron site in ACC oxidase. Academic Article uri icon

abstract

  • Ethylene is a plant hormone involved in all stages of growth and development, including regulation of germination, responses to environmental stress, and fruit ripening. The final step in ethylene biosynthesis, oxidation of 1-aminocyclopropane-1-carboxylic acid (ACC) to yield ethylene, is catalyzed by ACC oxidase (ACCO). In a previous EPR and ENDOR study of the EPR-active Fe(II)-nitrosyl, [FeNO],(7) complex of ACCO, we demonstrated that both the amino and the carboxyl moieties of the inhibitor d,l-alanine, and the substrate ACC by analogy, coordinate to the Fe(II) ion in the Fe(II)-NO-ACC ternary complex. In this report, we use 35 GHz pulsed and CW ENDOR spectroscopy to examine the coordination of Fe by ACCO in more detail. ENDOR data for selectively (15)N-labeled derivatives of substrate-free ACCO-NO (E-NO) and substrate/inhibitor-bound ACCO-NO (E-NO-S) have identified two histidines as protein-derived ligands to Fe; (1,2)H and (17)O ENDOR of samples in D(2)O and H(2)(17)O solvent have confirmed the presence of water in the substrate-free Fe(II) coordination sphere (E-NO). Analysis of orientation-selective (14,15)N and (17)O ENDOR data is interpreted in terms of a structural model of the ACCO active site, both in the presence (E-NO-S) and in the absence (E-NO) of substrate. Evidence is also given that substrate binding dictates the orientation of bound O(2).

published proceedings

  • J Am Chem Soc

author list (cited authors)

  • Tierney, D. L., Rocklin, A. M., Lipscomb, J. D., Que, L., & Hoffman, B. M

citation count

  • 62

complete list of authors

  • Tierney, David L||Rocklin, Amy M||Lipscomb, John D||Que, Lawrence||Hoffman, Brian M

publication date

  • May 2005