Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Academic Article uri icon

abstract

  • Polybrominated diphenyl ethers (PBDEs) are a class of widely used flame retardants that have recently been detected in environmental samples, diverse biota, human blood serum, and breast milk at exponentially increasing concentrations. Currently, little is known about the fate of these compounds, and in particular, about the microbial potential to degrade them. In this study, debromination of deca-BDE and an octa-BDE mixture is demonstrated with anaerobic bacteria including Sulfurospirillum multivorans and Dehalococcoides species. Hepta- and octa-BDEs were produced by the S. multivorans culture when it was exposed to deca-BDE, although no debromination was observed with the octa-BDE mixture. In contrast, a variety of hepta- through di-BDEs were produced by Dehalococcoides-containing cultures exposed to an octa-BDE mixture, despite the fact that none of these cultures could debrominate deca-BDE. The more toxic hexa-154, penta-99, tetra-49, and tetra-47 were identified among the debromination products. Because the penta-BDE congeners are among the most toxic PBDEs, debromination of the higher congeners to more toxic products in the environment could have profound implications for public health and for the regulation of these compounds.

altmetric score

  • 6

author list (cited authors)

  • He, J., Robrock, K. R., & Alvarez-Cohen, L.

citation count

  • 244

publication date

  • July 2006