Expression of tissue transglutaminase in the developing chicken limb is associated both with apoptosis and endochondral ossification. Academic Article uri icon

abstract

  • The cross-linking enzyme tissue transglutaminase (tTG) participates in a variety of cellular functions. To assess its contribution to extracellular and intracellular processes during development we cloned the cDNA for chicken heart tissue transglutaminase and localized the sites of transglutaminase expression by in situ hybridization and immunohistochemistry. Compared with the chicken red blood cell transglutaminase cDNA, the heart cDNA encodes a transglutaminase with an amino-terminal truncation. The truncated enzyme retains full catalytic activity and is GTP-inhibitable. Tissue transglutaminase expression was observed in developmentally transient structures in embryonic chicken limb at day 7.5 of incubation suggesting that its expression is dynamically regulated during limb morphogenesis. The major morphogenetic events of the limb associated with transglutaminase expression were cartilage maturation during skeletal development, interdigital apoptosis, and differentiation of skeletal muscle. Maturation of the cartilage during endochondral ossification was characterized by intra- and extracellular transglutaminase accumulation in the zone of hypertrophic chondrocytes. Only intracellular enzyme could be detected in mesenchymal cells of the prospective joints, in apoptotic cells of the interdigital web, and in skeletal muscle myoblasts. An apparently constitutive expression of tissue transglutaminase was found in vascular endothelial cells corresponding to the adult expression pattern. The dynamic pattern of transglutaminase expression during morphogenesis suggests that tissue remodeling is a major trigger for transglutaminase induction.

published proceedings

  • Cell Death Differ

altmetric score

  • 3

author list (cited authors)

  • Thomzy, V. A., & Davies, P. J.

citation count

  • 34

complete list of authors

  • Thomázy, VA||Davies, PJ

publication date

  • January 1999