Analysis of the pH-dependent Folding and Stability of Histidine Point Mutants Allows Characterization of the Denatured State and Transition State for Protein Folding Academic Article uri icon


  • pH-Dependent studies of the folding kinetics and stability of a set of His to Gln point mutants were used to characterize the denatured state and transition state ensembles for the C-terminal domain of the ribosomal protein L9 (CTL9). CTL9 contains three histidine residues, two of which, H106 and H134, are buried in the native state, while the third, H144, is more exposed. Comparison of the pH-dependent stability calculated using the Tanford-Wyman linkage relationship to the measured values demonstrates that the apparent pK(a) values of the three histidine residues are not significantly perturbed in the denatured state ensemble. Kinetic measurements show that mutation of H134 has a larger effect on the folding process than does mutation of H106 and H144. The Phi-value for H134 is significantly larger than the Phi-values for the other histidine residues, which are near zero at both pH 5.45 and pH 8.0. The Phi-value for H134 is higher, 0.55, at pH 8.0 than at pH 5.45, 0.39. At pH 5.45, H134 is protonated in the unfolded state but deprotonated in the native state, while at pH 8.0 it is deprotonated in both. There is an excellent linear relationship between stability (logK) and folding rates (logk(f)) over the range of pH 5-9 for all mutants. From these plots, the ratio of DeltaQ( not equal)/DeltaQ can be calculated for each mutant. DeltaQ( not equal) is the difference in the number of protons bound to the transition state and to the unfolded state, while DeltaQ represents the difference between folded and denatured state. The linear plots indicate that the relative position of the transition state ensemble as judged by DeltaQ( not equal)/DeltaQ is independent of pH. The linkage analysis is consistent with the Phi-value analysis, showing that H134 is the most critical contributor to the development of pH-dependent interactions, including desolvation effects in the transition state ensemble.

author list (cited authors)

  • Horng, J., Cho, J., & Raleigh, D. P.

citation count

  • 32

complete list of authors

  • Horng, Jia-Cherng||Cho, Jae-Hyun||Raleigh, Daniel P

publication date

  • January 2005