Mutational Analysis of the Folding Transition State of the C-Terminal Domain of Ribosomal Protein L9: A Protein with an Unusual β-Sheet Topology †
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The C-terminal domain of ribosomal protein L9 (CTL9) is a 92-residue alpha-beta protein which contains an unusual three-stranded mixed parallel and antiparallel beta-sheet. The protein folds in a two-state fashion, and the folding rate is slow. It is thought that the slow folding may be caused by the necessity of forming this unusual beta-sheet architecture in the transition state for folding. This hypothesis makes CTL9 an interesting target for folding studies. The transition state for the folding of CTL9 was characterized by phi-value analysis. The folding of a set of hydrophobic core mutants was analyzed together with a set of truncation mutants. The results revealed a few positions with high phi-values (> or = 0.5), notably, V131, L133, H134, V137, and L141. All of these residues were found in the beta-hairpin region, indicating that the formation of this structure is likely to be the rate-limiting step in the folding of CTL9. One face of the beta-hairpin docks against the N-terminal helix. Analysis of truncation mutants of this helix confirmed its importance in folding. Mutations at other sites in the protein gave small phi-values, despite the fact that some of them had major effects on stability. The analysis indicates that formation of the antiparallel hairpin is critical and its interactions with the first helix are also important. Thus, the slow folding is not a consequence of the need to fully form the unusual three-stranded beta-sheet in the transition state. Analysis of the urea dependence of the folding rates indicates that mutations modulate the unfolded state. The folding of CTL9 is broadly consistent with the nucleation-condensation model of protein folding.