Rapid degradation kinetics of amyloid fibrils under mild conditions by an archaeal chaperonin.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Amyloid depositions containing exceptionally stable -sheet rich protein aggregates, called fibrils are associated with prevalent and incurable neurodegenerative diseases. Chaperones are proteins that facilitate protein folding in both eukaryotes and prokaryotes. We found that a cold-adapted mutant ATP-dependant chaperonins (Hsp60) from a hyperthermophilic archaeon binds to and fragments insulin fibrils very rapidly with local targeted entry points. Individual fragments swell and the fibrillar -sheet is quickly transformed into a mix of -helical and unordered protein structures. After further incubation, the fragments coalesced, forming large amorphous aggregates with poly-disperse topologies. This finding represents a new approach to the disassembly of refractory protein aggregates under physiological conditions.