The unfolded protein response is not necessary for the G1/S transition, but it is required for chromosome maintenance in Saccharomyces cerevisiae. Academic Article uri icon


  • BACKGROUND: The unfolded protein response (UPR) is a eukaryotic signaling pathway, from the endoplasmic reticulum (ER) to the nucleus. Protein misfolding in the ER triggers the UPR. Accumulating evidence links the UPR in diverse aspects of cellular homeostasis. The UPR responds to the overall protein synthesis capacity and metabolic fluxes of the cell. Because the coupling of metabolism with cell division governs when cells start dividing, here we examined the role of UPR signaling in the timing of initiation of cell division and cell cycle progression, in the yeast Saccharomyces cerevisiae. METHODOLOGY/PRINCIPAL FINDINGS: We report that cells lacking the ER-resident stress sensor Ire1p, which cannot trigger the UPR, nonetheless completed the G1/S transition on time. Furthermore, loss of UPR signaling neither affected the nutrient and growth rate dependence of the G1/S transition, nor the metabolic oscillations that yeast cells display in defined steady-state conditions. Remarkably, however, loss of UPR signaling led to hypersensitivity to genotoxic stress and a ten-fold increase in chromosome loss. CONCLUSIONS/SIGNIFICANCE: Taken together, our results strongly suggest that UPR signaling is not necessary for the normal coupling of metabolism with cell division, but it has a role in genome maintenance. These results add to previous work that linked the UPR with cytokinesis in yeast. UPR signaling is conserved in all eukaryotes, and it malfunctions in a variety of diseases, including cancer. Therefore, our findings may be relevant to other systems, including humans.

published proceedings

  • PLoS One

author list (cited authors)

  • Henry, K. A., Blank, H. M., Hoose, S. A., & Polymenis, M.

citation count

  • 20

complete list of authors

  • Henry, Kelsey A||Blank, Heidi M||Hoose, Scott A||Polymenis, Michael

editor list (cited editors)

  • Kaeberlein, M.

publication date

  • September 2010