A viral protein antibiotic inhibits lipid II flippase activity Academic Article uri icon


  • For bacteriophage infections, the cell walls of bacteria, consisting of a single highly polymeric molecule of peptidoglycan (PG), pose a major problem for the release of progeny virions. Phage lysis proteins that overcome this barrier can point the way to new antibacterial strategies 1 , especially small lytic single-stranded DNA (the microviruses) and RNA phages (the leviviruses) that effect host lysis using a single non-enzymatic protein 2 . Previously, the A2 protein of levivirus Qβ and the E protein of the microvirus ϕX174 were shown to be 'protein antibiotics' that inhibit the MurA and MraY steps of the PG synthesis pathway 2-4 . Here, we investigated the mechanism of action of an unrelated lysis protein, LysM, of the Escherichia coli levivirus M 5 . We show that LysM inhibits the translocation of the final lipid-linked PG precursor called lipid II across the cytoplasmic membrane by interfering with the activity of MurJ. The finding that LysM inhibits a distinct step in the PG synthesis pathway from the A2 and E proteins indicates that small phages, particularly the single-stranded RNA (ssRNA) leviviruses, have a previously unappreciated capacity for evolving novel inhibitors of PG biogenesis despite their limited coding potential.

altmetric score

  • 45.858

author list (cited authors)

  • Chamakura, K. R., Sham, L., Davis, R. M., Min, L., Cho, H., Ruiz, N., Bernhardt, T. G., & Young, R. y.

citation count

  • 19

publication date

  • September 2017