The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The polyprotein encoded by plant potyviruses is proteolytically processed to at least eight mature products by viral-encoded proteinases. While the proteinases that catalyze processing at most of the cleavage sites have been identified, the enzyme responsible for cleavage between the 35-kDa protein and helper component-proteinase (HC-Pro), near the N-terminus of the viral polyprotein, has not been mapped or characterized previously. Polyproteins containing the 35-kDa protein and HC-Pro were synthesized in the wheat germ system using defined RNA transcripts and were demonstrated to undergo proteolysis to generate products that resemble fully processed proteins. The C-terminal half of the 35-kDa protein was found to be required for proteolysis, whereas most of the HC-Pro sequence was dispensable. Amino acid substitutions affecting three positions, each of which are conserved in the 35-kDa protein encoded by five potyviruses, were shown to inhibit protein processing. These data suggest that the 35-kDa protein functions as a proteinase to cleave at its C-terminus. A model that accounts for all proteolytic processing events in the potyviral polyprotein is presented.