Localized pulsed nanosecond discharges in a counterflow nonpremixed flame environment
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
2015 IOP Publishing Ltd. A flame is a very unusual environment for the development of a gas discharge, since it presents strong gradients in temperature, composition, and pre-ionization. In this paper we examine how such an environment impacts the development of the plasma when using repetitive pulsed nanosecond discharges, one of the main strategies used in the field of plasma assisted combustion. Experiments were performed in a counterflow nonpremixed burner with parallel electrodes at the nozzle exits and nanosecond-resolved photography of the plasma emission is presented. It was shown that the discharge development in stratified media may take place in the form of a dielectric barrier discharge with a localized energy deposition. In the experiments presented the discharge energy was coupled to the flame front because of the high rate of chemi-ionization and the gas density decrease in the flame.