Insights from machine learning for evaluating production function estimators on manufacturing survey data
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Organizations like U.S. Census Bureau rely on non-exhaustive surveys to estimate industry-level production functions in years in which a full Census is not conducted. When analyzing data from non-census years, we propose selecting an estimator based on a weighting of its in-sample and predictive performance. We compare Cobb-Douglas functional assumptions to existing nonparametric shape constrained estimators and a newly proposed estimator. For simulated data, we find that our proposed estimator has the lowest weighted errors. For actual data, specifically the 2010 Chilean Annual National Industrial Survey, a Cobb-Douglas specification describes at least 90\% as much variance as the best alternative estimators in practically all cases considered providing two insights: the benefits of using application data for selecting an estimator, and the benefits of structure in noisy data.