Tool path generation and tolerance analysis for free-form surfaces
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
This paper focuses on developing algorithms that generate tool paths for free-form surfaces based on the accuracy of a desired manufactured part. A manufacturing part is represented by mathematical curves and surfaces. Using the mathematical representation of the manufacturing part, we generate reliable and near-optimal tool paths as well as cutter location data file for post-processing. This algorithm includes two components. First is the forward-step function that determines the maximum distance, called forward step, between two cutter contact (CC) points with a given tolerance. This function is independent of the surface type and is applicable to all continuous parametric surfaces that are twice differentiable. The second component is the side step function which determines the maximum distance, called side step, between two adjacent tool paths with a given scallop height. This algorithm reduces manufacturing and computing time as well as the CC points while keeping the given tolerance and scallop height in the tool paths. Several parts, for which the CC points are generated using the proposed algorithm, are machined using a three-axes milling machine. As part of the validation process, the tool paths generated during machining are analyzed to compare the machined part and the desired part. 2006 Elsevier Ltd. All rights reserved.