C-terminal interactions mediate the quaternary dynamics of B-crystallin.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
B-crystallin is a highly dynamic, polydisperse small heat-shock protein that can form oligomers ranging in mass from 200 to 800 kDa. Here we use a multifaceted mass spectrometry approach to assess the role of the C-terminal tail in the self-assembly of B-crystallin. Titration experiments allow us to monitor the binding of peptides representing the C-terminus to the B-crystallin core domain, and observe individual affinities to both monomeric and dimeric forms. Notably, we find that binding the second peptide equivalent to the core domain dimer is considerably more difficult than the first, suggesting a role of the C-terminus in regulating assembly. This finding motivates us to examine the effect of point mutations in the C-terminus in the full-length protein, by quantifying the changes in oligomeric distribution and corresponding subunit exchange rates. Our results combine to demonstrate that alterations in the C-terminal tail have a significant impact on the thermodynamics and kinetics of B-crystallin. Remarkably, we find that there is energy compensation between the inter- and intra-dimer interfaces: when one interaction is weakened, the other is strengthened. This allosteric communication between binding sites on B-crystallin is likely important for its role in binding target proteins.