A K-VECTOR APPROACH TO SAMPLING, INTERPOLATION, AND APPROXIMATION
Conference Paper
Overview
Identity
Additional Document Info
View All
Overview
abstract
The k-vector search technique is a method designed to perform extremely fast range searching of large databases at computational cost independent of the size of the database. k-vector search algorithms have historically found application in satellite star-tracker navigation systems which index very large star catalogues repeatedly in the process of attitude estimation. Recently, the k-vector search algorithm has been applied to numerous other problem areas including non-uniform random variate sampling, interpolation of 1-D or 2-D tables, nonlinear function inversion, and solution of systems of nonlinear equations. This paper presents algorithms in which the k-vector search technique is used to solve each of these problems in a computationally-efficient manner. In instances where these tasks must be performed repeatedly on a static (or nearly-static) data set, the proposed k-vector-based algorithms offer an extremely fast solution technique that outperforms standard methods.