Shock wave propagation and dispersion in glow discharge plasmas Academic Article uri icon

abstract

  • Spark-generated shock waves were studied in glow discharges in argon and argonnitrogen mixtures. Ultraviolet filtered Rayleigh scattering was used to measure radial profiles of gas temperature, and the laser schlieren method was used to measure shock arrival times and axial density gradients. Time accurate, inviscid, axisymmetric fluid dynamics computations were run and results compared with the experiments. Our simulation show that changes in shock structure and velocity in weakly ionized gases are explained by classical gas dynamics, with the critical role of thermal and multi-dimensional effects (transverse gradients, shock curvature, etc.). A direct proof of the thermal mechanism was obtained by pulsing the discharge. With a sub-millisecond delay between starting the discharge and shock launch, plasma parameters reach their steady-state values, but the temperature is still low, laser schlieren signals are virtually identical to those without the discharge, differing dramatically from the signals in discharges with fully established temperature profiles.

published proceedings

  • PHYSICS OF FLUIDS

author list (cited authors)

  • Macheret, S. O., Ionikh, Y. Z., Chernysheva, N. V., Yalin, A. P., Martinelli, L., & Miles, R. B.

citation count

  • 56

complete list of authors

  • Macheret, SO||Ionikh, YZ||Chernysheva, NV||Yalin, AP||Martinelli, L||Miles, RB

publication date

  • September 2001