Ultraviolet filtered Rayleigh scattering temperature measurements with a mercury filter.
Conference Paper
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We report the development of ultraviolet filtered Rayleigh scattering as a diagnostic tool for measurements of gas properties. A frequency-tripled narrow-linewidth Ti:sapphire laser illuminates a sample, and Rayleigh scattered light is imaged through a mercury-vapor absorption filter. Working in the ultraviolet improves the signal-to-noise ratio compared with that previously obtained in the visible as the result of an enhanced scattering cross section as well as the nearly ideal properties of the mercury filter. Tuning the laser through the absorption notch of the filter is a means of probing the scattering line shape, which contains temperature information. Temperature measurements of air are shown to have uncertainties of less than 3%.