Microglia-associated granule cell death in the normal adult dentate gyrus. Academic Article uri icon


  • Microglial cells are constantly monitoring the central nervous system for sick or dying cells and pathogens. Previous studies showed that the microglial cells in the dentate gyrus have a heterogeneous morphology with multipolar cells in the hilus and fusiform cells apposed to the granule cell layer both at the hilar and at the molecular layer borders. Although previous studies showed that the microglia in the dentate gyrus were not activated, the data in the present study show dying granule cells apposed by Iba1-immunolabeled microglial cell bodies and their processes both at hilar and at molecular layer borders of the granule cell layer. Initially, these Iba1-labeled microglial cells surround individual, intact granule cell bodies. When small openings in the plasma membrane of granule cells are observed, microglial cells are apposed to these openings. When larger openings in the plasma membrane occur at this site of apposition, the granule cells display watery perikaryal cytoplasm, watery nucleoplasm and damaged organelles. Such morphological features are characteristic of neuronal edema. The data also show that following this localized disintegration of the granule cell's plasma membrane, the Iba1-labeled microglial cell body is found within the electron-lucent perikaryal cytoplasm of the granule cell, where it is adjacent to the granule cell's nucleus which is deformed. We propose that granule cells are dying by a novel microglia-associated mechanism that involves lysis of their plasma membranes followed by neuronal edema and nuclear phagocytosis. Based on the morphological evidence, this type of cell death differs from either apoptosis or necrosis.

published proceedings

  • Brain Struct Funct

author list (cited authors)

  • Ribak, C. E., Shapiro, L. A., Perez, Z. D., & Spigelman, I.

citation count

  • 16

complete list of authors

  • Ribak, Charles E||Shapiro, Lee A||Perez, Zachary D||Spigelman, Igor

publication date

  • January 2009