Assessing riverscape-scale variation in fish life history using banded sculpin (Cottus carolinae) Academic Article uri icon


  • 2017, Springer Science+Business Media B.V. Advancing the field of fish ecology requires a shift in focus from describing patterns in species occurrences to understanding the mechanisms that regulate distributions and abundances across broad scales. For stream fish ecology, this includes understanding environmental mechanisms that regulate stream fish demographic properties at the scale of stream networks or riverscapes. Despite the fact that Banded Sculpin Cottus carolinae occupy a diversity of habitats and stream sizes across the southeastern United States, relatively little is known about the demography of this species. We assessed annual demographic properties (reproduction, growth, and survival) of C. carolinae collected monthly from four sites distributed longitudinally along the Roaring River riverscape in Tennessee to simultaneously describe life history attributes of the species and address riverscape-scale variation in population dynamics. Cottus carolinae lived for a maximum of four years, local populations were dominated by age-0 and age-1 individuals, reproduction began after one year, spawning occurred during December and January, and mean ova number was 398. A life history tradeoff between growth (robustness) and survival was evident at one site where water temperature and flow were least variable, otherwise life history attributes were consistent across the riverscape despite longitudinal changes in abiotic variables. Our work illustrates the potential for muted population responses to a strong hydrologic gradient in stream size and highlights the stability inherent with fish life history adaptations to natural environmental regimes across broad spatial scales.

published proceedings


altmetric score

  • 0.25

author list (cited authors)

  • Gebhard, A. E., & Perkin, J. S.

citation count

  • 5

complete list of authors

  • Gebhard, Amy E||Perkin, Joshuah S

publication date

  • August 2017