Effects of interfacial variables on ceramic adherence to cast and machined commercially pure titanium. Academic Article uri icon

abstract

  • STATEMENT OF THE PROBLEM: Titanium-ceramic bonding is less optimal than conventional metal-ceramic bonding, due to excessive oxidation of titanium during porcelain firing. PURPOSE: This in vitro study evaluated the effects of porcelain firing atmosphere and gold sputter coating on titanium surfaces on porcelain bonding to machined and as-cast titanium substrates. Material and methods Eight groups of ASTM grade 2 commercially pure (CP) titanium specimens (13 mm x13 mm x1 mm) were prepared (n=10). A conventional Au-Pd-In metal-ceramic alloy (Orion) and an ultra low-fusing porcelain (Finesse) served as the control (n=10). Forty machined titanium specimens were prepared from 1.00-mm thick titanium sheets with a diamond band saw. Forty titanium specimens were produced in a centrifugal dental titanium casting machine. All titanium specimens were airborne particle abraded with 110-microm alumina particles, whereas the control specimens were airborne particle abraded with 50-microm alumina particles. Forty titanium specimens (20 specimens each of as-cast and machined titanium) were randomly selected for gold sputter coating before ceramic firing. An ultra low-fusing porcelain (Vita Titankeramik) was fused on the central 6-mm diameter circular area on each titanium specimen. Porcelain firing environments for the titanium specimens consisted of vacuum and a reduced argon atmosphere. Porcelain was debonded by a biaxial flexure, constant strain test at a cross-head speed of 0.25 mm/min. Specimens were analyzed by standardized SEM/EDS analysis 3 times throughout the study to determine the silicon atomic percentage (Si at %): (1) after airborne particle abrasion, before porcelain application; (2) after the application of the first layer of porcelain; and (3) after the fracture of porcelain from the metal substrate. The titanium-ceramic adhesion was characterized by determining the area fraction of adherent porcelain (AFAP). Results were analyzed by analysis of variance and the Student-Newman-Keuls test (alpha=.05). RESULTS: Statistical analysis showed a significant difference in the AFAP values among all the groups. AFAP value of the control group was significantly higher (135.35 +/- 23.68) than those of the experimental groups (P<.001). For the machined titanium, AFAP value of gold sputter-coated/argon group (91.38 +/- 7.93) was significantly higher than the rest of the groups (P<.001). For the as-cast titanium fired in vacuum, significantly lower AFAP values (P<.001) were found in the gold sputter-coated group (50.2 +/- 11.26 vs 66.15 +/- 10.41). AFAP values between the argon groups with or without the gold coating were not significantly different (P=.303); however, both argon groups (93.83 +/- 4.65 and 98.09 +/- 6.35) showed significantly higher AFAP values compared with the vacuum groups (P<.001). CONCLUSION: Firing porcelain in a reduced argon atmosphere significantly improved titanium-ceramic bonding for machined and as-cast titanium. The sputter-coated gold layer on titanium provided improved titanium-ceramic bonding only when combined with firing porcelain in reduced argon atmosphere. When porcelain was fired in vacuum in the presence of the gold layer, the titanium-ceramic bonding was weakened in as-cast titanium and was not affected in machined titanium. Conventional noble metal-ceramic bonding was superior to titanium-ceramic bonding regardless of the interfacial variables examined in this study.

published proceedings

  • J Prosthet Dent

author list (cited authors)

  • Sadeq, A., Cai, Z., Woody, R. D., & Miller, A. W

citation count

  • 57

complete list of authors

  • Sadeq, Abdulaziz||Cai, Zhuo||Woody, Ronald D||Miller, Amp W

publication date

  • July 2003