Im, Piljae (2003-12). A Methodology to Evaluate Energy Savings and NOx Emissions Reductions from the Adoption of the 2000 International Energy Conservation Code (IECC) to New Residences in Non-Attainment and Affected Counties in Texas. Master's Thesis. Thesis uri icon

abstract

  • Currently, four areas of Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because they exceeded the national one-hour ground-level ozone standard of 0.12 parts-per-million (ppm). Ozone is formed in the atmosphere by the reaction of Volatile Organic Compounds (VOCs) and Nitrogen Oxides (NOx) in the presence of heat and sunlight. In May 2002, The Texas State Legislature passed Senate Bill 5, the Texas Emissions Reduction Plan (TERP), to reduce the emissions of NOx by several sources. As part of the 2001 building energy performance standards program which is one of the programs in the TERP, the Texas Legislature established the 2000 International Energy Conservation Code (IECC) as the state energy code. Since September 1, 2001, the 2000 IECC has been required for newly constructed single and multifamily houses in Texas. Therefore, this study develops and applies portions of a methodology to calculate the energy savings and NOx emissions reductions from the adoption of the 2000 IECC to new single family houses in non-attainment and affected counties in Texas. To accomplish the objectives of the research, six major tasks were developed: 1) baseline data collection, 2) development of the 2000 IECC standard building simulation, 3) projection of the number of building permits in 2002, 4) comparison of energy simulations, 5) validation and, 6) NOx emissions reduction calculations. To begin, the 1999 standard residential building characteristics which are the baseline construction data were collected, and the 2000 IECC standard building characteristics were reviewed. Next, the annual and peak-day energy savings were calculated using the DOE-2 building energy simulation program. The building characteristics and the energy savings were then crosschecked using the data from previous studies, a site visit survey, and utility billing analysis. In this thesis, several case study houses are used to demonstrate the validation procedure. Finally, the calculated electricity savings (MWh/yr) were then converted into the NOx emissions reductions (tons/yr) using the EPA's eGRID database. The results of the peak-day electricity savings and NOx emissions reductions using this procedure are approximately twice the average day electricity savings and NOx emissions reductions.

publication date

  • December 2003