Community climate simulations to assess avoided impacts in 1.5 and 2 C futures Academic Article uri icon

abstract

  • Abstract. The Paris Agreement of December 2015 stated agoal to pursue efforts to keep global temperatures below 1.5C above preindustrial levels and well below 2C. The IPCC was charged with assessing climate impacts at these temperature levels, but fully coupled equilibrium climate simulations do not currently exist to inform such assessments. In this study, we produce aset of scenarios using asimple model designed to achieve long-term 1.5 and 2C temperatures in astable climate. These scenarios are then used to produce century-scale ensemble simulations using the Community Earth System Model, providing impact-relevant long-term climate data for stabilization pathways at 1.5 and 2C levels and an overshoot 1.5C case, which are realized (for the 21st century) in the coupled model and are freely available to the community. Here we describe the design of the simulations and abrief overview of their impact-relevant climate response. Exceedance of historical record temperature occurs with 60% greater frequency in the 2C climate than in a1.5C climate aggregated globally, and with twice the frequency in equatorial and arid regions. Extreme precipitation intensity is statistically significantly higher in a2.0C climate than a1.5C climate in some specific regions (but not all). The model exhibits large differences in the Arctic, which is ice-free with afrequency of 1 in 3years in the 2.0C scenario, and 1 in 40years in the 1.5C scenario. Significance of impact differences with respect to multi-model variability is not assessed.

published proceedings

  • EARTH SYSTEM DYNAMICS

altmetric score

  • 5.75

author list (cited authors)

  • Sanderson, B. M., Xu, Y., Tebaldi, C., Wehner, M., O'Neill, B., Jahn, A., ... Lamarque, J. F.

citation count

  • 158

publication date

  • September 2017