A case for motor network contributions to schizophrenia symptoms: Evidence from resting‐state connectivity Academic Article uri icon

abstract

  • Though schizophrenia (SCZ) is classically defined based on positive symptoms and the negative symptoms of the disease prove to be debilitating for many patients, motor deficits are often present as well. A growing literature highlights the importance of motor systems and networks in the disease, and it may be the case that dysfunction in motor networks relates to the pathophysiology and etiology of SCZ. To test this and build upon recent work in SCZ and in at-risk populations, we investigated cortical and cerebellar motor functional networks at rest in SCZ and controls using publically available data. We analyzed data from 82 patients and 88 controls. We found key group differences in resting-state connectivity patterns that highlight dysfunction in motor circuits and also implicate the thalamus. Furthermore, we demonstrated that in SCZ, these resting-state networks are related to both positive and negative symptom severity. Though the ventral prefrontal cortex and corticostriatal pathways more broadly have been implicated in negative symptom severity, here we extend these findings to include motor-striatal connections, as increased connectivity between the primary motor cortex and basal ganglia was associated with more severe negative symptoms. Together, these findings implicate motor networks in the symptomatology of psychosis, and we speculate that these networks may be contributing to the etiology of the disease. Overt motor deficits in SCZ may signal underlying network dysfunction that contributes to the overall disease state. Hum Brain Mapp 38:4535-4545, 2017. © 2017 Wiley Periodicals, Inc.

altmetric score

  • 1

author list (cited authors)

  • Bernard, J. A., Goen, J., & Maldonado, T.

citation count

  • 26

publication date

  • June 2017

publisher