The use of light/chemically hardened polymethylmethacrylate, polyhydroxyethylmethacrylate, and calcium hydroxide graft material in combination with polyanhydride around implants in minipigs: part I: immediate stability and function.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
BACKGROUND: The present study is designed as a proof-of-concept study to evaluate light/chemical hardening technology and a newly formulated polymethylmethacrylate, polyhydroxyethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA) (PPCH-PA) composite graft material as a bone substitute compared to positive and negative controls in a minipig model. METHODS: PPCH-PA (composite graft); PPCH alone (positive control), PA alone (positive control), and no graft (negative control) were compared. Four mandibular premolar teeth per quadrant were extracted; a total of 48 implants were placed into sockets in three minipigs. Abutments were placed protruding into the oral cavity 4 mm in height for immediate loading. Crestal areas and intrabony spaces were filled with PPCH-PA, PPCH, or PA using a three-phase delivery system in which all graft materials were hardened by a light cure. In the negative control group, implant sites were left untreated. At 12 weeks, block sections containing implants were obtained. Evaluations included periodontal probing, pullout-force load, and stability measurements to determine implant stability, radiographs to examine bone levels, and scanning electron microscopy (SEM)-energy-dispersed spectroscopy to determine bone-to-implant contact. RESULTS: Probing measurements did not reveal any pathologic pocket formation or bone loss. Radiographs revealed that immediate implant placement and loading resulted in bone at or slightly apical to the first thread of the implant in all groups at 12 weeks. Stability test values showed a relative clinical stability for all implants (range: -7 to +1); however, implants augmented with PPCH-PA exhibited a statistically significantly greater stability compared to all other groups (P <0.05). The newly formed bone in PPCH-PA-treated sites was well organized with less marrow spaces and well-distributed osteocytes. SEM revealed a tighter implant-socket interface in the PPCH-PA group compared to other groups with reduced microfissures and implant-bone interface fractures during pullout testing, whereas implants treated with PA or no graft showed 10-m microfissures between the implant and bone with fractures of the intrathread bone. CONCLUSIONS: The newly formulated chemically hardened graft material PPCH-PA was useful in immediate implant placement after tooth extraction and resulted in greater stability and a well-organized implant-bone interface with immediate loading, especially in those areas where cancellous bone was present. The results of this proof-of-concept study warranted further research investigating different healing times and longer durations.
published proceedings
J Periodontol
author list (cited authors)
Hasturk, H., Kantarci, A., Ghattas, M., Schmidt, M., Giordano, R. A., Ashman, A., Diekwisch, T. G., & Van Dyke, T.
citation count
8
complete list of authors
Hasturk, Hatice||Kantarci, Alpdogan||Ghattas, Mazen||Schmidt, Marcella||Giordano, Russell A||Ashman, Arthur||Diekwisch, Thomas G||Van Dyke, Thomas