Continuous forces are more effective than intermittent forces in expanding sutures. uri icon

abstract

  • While both intermittent and continuous forces are commonly used to expand sutures, it remains unclear which force is most effective. Using nickel-titanium (NiTi) open coil springs (50 g) and 3 mm long miniscrew implants (MSIs) for skeletal anchorage, intermittent and continuous forces were used to expand the midsagittal sutures in 18 New Zealand white juvenile male rabbits, 11 weeks of age, for 29 days. In the intermittent group, expansion forces of 50 g were delivered for 5 days (on) and paused for 1 day (off); the on/off cycles were repeated five times. Expansion forces of 50 g were delivered for 29 consecutive days in the continuous group. Longitudinal biometric and histomorphometric analyses were performed to evaluate sutural separation and bone formation using implanted tantalum bone markers and fluorescent bone labelling, respectively. Multilevel modelling procedures were undertaken to compare the groups and time intervals. Continuous forces produced significantly greater overall sutural separation (1.3 mm) than intermittent forces (0.8 mm). Although they were delivered over a period of time 86 per cent as long, intermittent forces produced only 61 per cent of the sutural separation of continuous forces. Between days 7 and 17, continuous forces resulted in significantly greater mineral apposition and bone formation rates than intermittent forces. Intermittent forces produced approximately 59 per cent as much mineral apposition and 61 per cent as much bone formation as continuous forces. Due to greater sutural separation and bone formation, continuous forces provide a more effective approach for separating sutures than intermittent forces.

published proceedings

  • Eur J Orthod

author list (cited authors)

  • Liu, S., Kyung, H., & Buschang, P. H.

citation count

  • 37

complete list of authors

  • Liu, Sean Shih-Yao||Kyung, Hee-Moon||Buschang, Peter H

publication date

  • August 2010