Melting Proteins: Evidence for Multiple Stable Structures upon Thermal Denaturation of Native Ubiquitin from Ion Mobility Spectrometry-Mass Spectrometry Measurements. Academic Article uri icon

abstract

  • Ion mobility and mass spectrometry techniques are coupled with a temperature-controlled electrospray ionization source to follow the structural transitions of ubiquitin in aqueous solution (pH = 3) at elevated solution temperatures (T = 26-96 C). Changes in the charge state distribution are consistent with a two-state, cooperative unfolding transition having a melting temperature of Tm = 71 2 C, in agreement with prior measurements [ Wintrode , P. L. ; Makhatadze , G. I. ; Privalov , P. L. Proteins , 1994 , 18 , 246 - 253 ]. However, analysis of ion mobility distributions reveals the two-state transition is a composite of transitions involving at least nine unique species: three native or native-like structures; two that appear to be equilibrium intermediates (i.e., populations of new conformers that form at elevated temperatures but subsequently disappear at higher temperatures); and four products observed at high temperatures, including the well-characterized ubiquitin A state, and two solution species that are differentiated based on a cis- or trans-configured Glu18-Pro19 peptide bond. These nine states vary in abundances by factors as large as 103 over the range of solution temperatures. Although experimental melting transitions are conceived as a loss of well-defined structure leading to a random distribution of unstructured, denatured forms, the results provide evidence for new conformers having at least some well-defined structural elements are stabilized as temperature is increased.

published proceedings

  • J Am Chem Soc

altmetric score

  • 6.5

author list (cited authors)

  • El-Baba, T. J., Woodall, D. W., Raab, S. A., Fuller, D. R., Laganowsky, A., Russell, D. H., & Clemmer, D. E.

citation count

  • 74

complete list of authors

  • El-Baba, Tarick J||Woodall, Daniel W||Raab, Shannon A||Fuller, Daniel R||Laganowsky, Arthur||Russell, David H||Clemmer, David E

publication date

  • May 2017