Mani Biswas, Mousumi (2012-02). Theoretical Investigations on Nanoporpus Materials and Ionic Liquids for Energy Storage. Doctoral Dissertation. Thesis uri icon

abstract

  • In the current context of rapidly depleting petroleum resources and growing environmental concerns, it is important to develop materials to harvest and store energy from renewable and sustainable sources. Hydrogen has the potential to be an alternative energy source, since it has higher energy content than petroleum. However, since hydrogen has very low volumetric energy density, hence it is important to design nano porous materials which can efficiently store large volumes of hydrogen gas by adsorption. In this regard carbon nanotube and Metal Organic Framework (MOFs) based materials are worth studying. Ionic liquids (IL) are potential electrolytes that can improve energy storage capacity and safety in Li ion batteries. Therefore it is important to understand IL's thermodynamic and transport properties, especially when it is in contact with electrode surface and mixed with Li salt, as happens in the battery application. This dissertation presents computation and simulation based studies on: 1. Hydrogen storage in carbon nanotube scaffold. 2. Mechanical property and stability of various nanoporous Metal Organic Frameworks. 3. Thermodynamic and transport properties of [BMIM][BF4] ionic liquid in bulk, in Li Salt mixture, on graphite surface and under nanoconfinement. In the first study, we report the effects of carbon nanotube diameter, tube chirality, tube spacer distance, tube functionalization and presence of Li on hydrogen sorption capacity and thermodynamics at different temperature and pressure. In the second one, we observe high pressure induced structural transformation of 6 isoreticular MOFs: IRMOF-1. IRMOF-3, IRMOF-6, IRMOF-8, IRMOF-10 and IRMOF-14, explore the deformation mechanism and effect of Hydrogen inside crystal lattice. In the third study, we observe the equilibrium thermodynamic and transport properties of [BMIM][BF4] ionic liquid. The temperature dependence of ion diffusion, conductivity, dielectric constant, dipole relaxation time and viscosity have been observed and found similar behavior to those of supercooled liquid. The ion diffusion on graphite surfaces and under nanoconfinement was found to be higher compared to those in bulk.

publication date

  • December 2011