The impact of considering uncertainty in measured calibration/validation data during auto-calibration of hydrologic and water quality models
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2015, Springer-Verlag Berlin Heidelberg. The importance of uncertainty inherent in measured calibration/validation data is frequently stated in literature, but it is not often considered in calibrating and evaluating hydrologic and water quality models. This is due to the limited amount of data available to support relevant research and the limited scientific guidance on the impact of measurement uncertainty. In this study, the impact of considering measurement uncertainty during model auto-calibration was investigated in a case study example using previously published uncertainty estimates for streamflow, sediment, and NH4-N. The results indicated that inclusion of measurement uncertainty during the auto-calibration process does impact model calibration results and predictive uncertainty. The level of impact on model predictions followed the same pattern as measurement uncertainty: streamflow