The effect of nanoparticle aggregation on surfactant foam stability. Academic Article uri icon

abstract

  • The combination of nanoparticles (NPs) and surfactant may offer a novel technique of generating stronger foams for gas mobility control. This study evaluates the potential of silica NPs to enhance the foam stability of three nonionic surfactants. Results showed that the concentration of surfactant and NPs is a crucial parameter for foam stability and that there is certain concentrations for strong foam generation. A balance in concentration between the nonionic surfactants and the NPs can enhance the foam stability as a result of forming flocs in solutions. At fixed surfactant concentration, the addition of NPs at low to intermediate concentrations can produce a more stable foam compared to the surfactant. The production of small population of flocs as a result of mixing the surfactant and NPs can enhance the foam stability by providing a barrier between the gas bubbles and delaying the coalescence of bubbles. Moreover, these flocs can increase the solution viscosity and, therefore, slow the drainage rate of thin aqueous film (lamellae). The measurements of foam half-life, bubble size, and mobility tests confirmed this conclusion. However, the addition of more solid particles or surfactant might have a negative impact on foam stability and reduce the maximum capillary pressure of coalescence as a result of forming extensive aggregates.

published proceedings

  • J Colloid Interface Sci

altmetric score

  • 3.5

author list (cited authors)

  • AlYousef, Z. A., Almobarky, M. A., & Schechter, D. S.

citation count

  • 91

complete list of authors

  • AlYousef, Zuhair A||Almobarky, Mohammed A||Schechter, David S

publication date

  • February 2018