Chiral magnetic effect in the anomalous transport model
Conference Paper
Overview
Identity
Additional Document Info
Other
View All
Overview
abstract
Published under licence by IOP Publishing Ltd. We report our recent study of the effect of the magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions using the anomalous transport model. We have found that the magnetic field can lead to a charge quadrupole moment in the transverse plane of a heavy ion collisions if the magnetic field lasts sufficiently long and the charge asymmetry of produced matter is nonzero. As the matter expands, the charge quadrupole moment leads to a splitting between the elliptic flows of quarks and antiquarks. However, the elliptic flow difference increases with the charge asymmetry, which is expected from the chiral magnetic wave formed in the quark-gluon plasma, only if the Lorentz force is neglected and the quark-antiquark scattering is dominated by the chirality changing channel.