Variable-temperature ion mobility time-of-flight mass spectrometry studies of electronic isomers of Kr2+ and CH3OH*+ radical cations.
Conference Paper
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Preliminary results from a liquid nitrogen-cooled ion mobility (IM) orthogonal-time-of-flight (o-ToF) mass spectrometer applied to the separation of electronic isomers of Kr2+ and methanol radical cations (conventional and distonic) are presented. Ab initio calculations were used to estimate the energies and energy barriers to interconversion between conventional (CH3OH*+) and distonic (CH2*OH2+) radical cations. In addition, computations and experiments are used to compare ion-neutral collision cross-sections for CH3OH*+ and CH2*OH2+ radical cations and suggest that the mobility separation is achieved by ion-neutral interactions between ions and neutral buffer gas.