Analysis of Glutathione in Biological Samples by HPLC Involving Pre-Column Derivatization with o-Phthalaldehyde Academic Article uri icon

abstract

  • Glutathione (GSH) forms conjugates with polyamines in prokaryotes and eukaryotes. There is also evidence suggesting cross-talk between GSH and polyamines to regulate cellular homeostasis and function, particularly under the conditions of oxidative stress. Because of its versatile roles in cell metabolism and function, a number of high performance liquid chromatography (HPLC) methods have been developed for glutathione analysis. Here, we describe our rapid and sensitive method for the analysis of GSH and the oxidized form of glutathione (GS-SG) in animal tissues and cells by HPLC involving pre-column derivatization with o-phthalaldehyde (OPA). OPA reacts very rapidly (within 1 min) with S-carboxymethyl-glutathione at room temperatures (e.g., 20-25 °C) in an autosampler, and their derivatives are immediately injected into the HPLC column without any need for extraction. This method requires two simple steps (a total of 15 min) before samples are loaded into the autosampler: (a) the conversion of GS-SG into GSH by 2-mercaptoethanol; and (b) the oxidation of GSH by iodoacetic acid to yield S-carboxymethyl-glutathione. The autosampler is programmed to mix S-carboxymethyl-glutathione with OPA for 1 min to generate a highly fluorescent derivative for HPLC separation and detection (excitation wavelength 340 nm and emission wavelength 450 nm). The detection limit for GSH and GS-SG is 15 pmol/ml or 375 fmol/injection. The total time for chromatographic separation (including column regeneration) is 16 min for each sample. Our routine HPLC technique is applicable for analyses of cysteine and cystine, as well as polyamines and GSH-polyamine conjugates in biological samples.

author list (cited authors)

  • Hou, Y., Li, X., Dai, Z., Wu, Z., Bazer, F. W., & Wu, G.

citation count

  • 7
  • 8

publication date

  • October 2017