Generalized Regression Neural Networks with K-Fold Cross-Validation for Displacement of Landslide Forecasting
Conference Paper
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Springer International Publishing Switzerland 2014. This paper proposes a generalized regression neural networks (GRNNS) with K-fold cross-validation (GRNNSK) for predicting the displacement of landslide. Furthermore, correlation analysis is a fundamental analysis to find the potential input variables for a forecast model. Pearson cross-correlation coefficients (PCC) and mutual information (MI) are applied in the paper. Test on the case study of Liangshuijing (LSJ) landslide in the Three Gorges reservoir in China demonstrate the effectiveness of the proposed approach.