Androgen inhibition of follicle-stimulating hormone-stimulated luteinizing hormone receptor formation in cultured rat granulosa cells. Academic Article uri icon

abstract

  • Since LH receptors are decreased in atretic follicles known to contain high androgen levels, we have studied the androgen modulation of LH receptor formation in vitro. Granulosa cells from hypophysectomized, diethylstilbestrol-treated rats were cultured for 3 days with FSH in the presence or absence of nonaromatizable androgens, dihydrotestosterone and 5 alpha-androstane-3 alpha, 17 beta-diol, or a synthetic androgen, R1881 (17 beta-hydroxy-17 alpha-methyl-4,9,11-estratrien-3-one). FSH increased LH receptor content in granulosa cells, while concomitant androgen treatment decreased LH receptor content in a dose- and time-dependent manner, without changing the equilibrium dissociation constant (Kd) for human CG. R1881 (10(-7) M), dihydrotestosterone (10(-6) M), and 5 alpha-androstane-3 alpha, 17 beta-diol (10(-6) M) inhibited LH receptor content by 68%, 65%, and 65%, respectively. Similar to earlier findings, these androgens enhanced FSH-stimulated progesterone biosynthesis and aromatase activity in the same cells. To study their LH responsiveness, androgen-treated cells were washed and reincubated for 2 more days with or without LH. Although basal progesterone production was elevated by R1881 pretreatment, the androgen-pretreated cells were less responsive to LH. Treatment with cyanoketone, an inhibitor of 3 beta-hydroxysteroid dehydrogenase, did not alter the inhibitory effects of R1881 on LH receptors, indicating that the androgen action is not mediated by endogenous progestins. Furthermore, R1881 inhibited the stimulation of LH receptor formation by forskolin, cholera toxin, and 8-bromo-cAMP, suggesting that androgens may inhibit LH receptor induction by affecting post-cAMP events. Estrogen treatment enhanced the FSH induction of LH receptor content, while concomitant addition of R1881 also suppressed the estrogen action. Thus, androgens inhibit FSH-induced functional LH receptors in cultured rat granulosa cells. The androgen effect is exerted, at least partially, at post-cAMP sites and is independent of changes in progestin biosynthesis.

published proceedings

  • Endocrinology

author list (cited authors)

  • Jia, X. C., Kessel, B., Welsh, T. H., & Hsueh, A. J.

citation count

  • 34

complete list of authors

  • Jia, XC||Kessel, B||Welsh, TH||Hsueh, AJ

publication date

  • July 1985