A MESHLESS GALERKIN METHOD FOR NON-LOCAL DIFFUSION USING LOCALIZED KERNEL BASES
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2018 American Mathematical Society. We introduce a meshless method for solving both continuous and discrete variational formulations of a volume constrained, non-local diffusion problem. We use the discrete solution to approximate the continuous solution. Our method is non-conforming and uses a localized Lagrange basis that is constructed out of radial basis functions. By verifying that certain inf-sup conditions hold, we demonstrate that both the continuous and discrete problems are well-posed, and also present numerical and theoretical results for the convergence behavior of the method. The stiffness matrix is assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, symmetric matrix. This then is used to find the discretized solution.