A Study of Structural and Bonding Variations in the Homologous Series [Mo2(CN)6(dppm)2] n - (n = 2, 1, 0) Academic Article uri icon


  • Reaction of Mo(2)Cl(4)(dppm)(2) (dppm = bis(diphenylphosphino)methane) with 6 equiv of [n-Bu(4)N][CN] or [Et(4)N][CN] in dichloromethane yields [n-Bu(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (1) and [Et(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (2), respectively. The corresponding one- and two-electron oxidation products [n-Bu(4)N][Mo(2)(CN)(6)(dppm)(2)] (3) and Mo(2)(CN)(6)(dppm)(2) (4)were prepared by reactions of 1 with the oxidant NOBF(4). Single-crystal X-ray structures of 2.2CH(3)CN, 3.2CH(3)CN.2H(2)O, and 4.2CH(3)NO(2) were performed, and the results confirmed that all three complexes contain identical ligand sets with trans dppm ligands bisecting the Mo(2)(mu-CN)(2)(CN)(4) equatorial plane. The binding of the bridging cyanide ligands is affected by the oxidation state of the dimolybdenum core as evidenced by an increase in side-on pi-bonding overlap of the mu-CN in going from 1 to 4. The greater extent of pi-donation into Mo orbitals is accompanied by a lengthening of the Mo-Mo distance (2.736(1) A in Mo(2)(II,II) (2), 2.830(1) A in Mo(2)(II,III) (3), and 2.936(1) A in Mo(2)(III,III) (4)). A computational study of the closed-shell members of this homologous series, [Mo(2)(CN)(6)(dppm)(2)](n)() (n = 2-, 0), indicates that the more pronounced side-on pi-donation evident in the X-ray structure of 4 leads to significant destabilization of the delta orbital and marginal stabilization of the delta() orbitals with respect to nearly degenerate delta and delta orbitals in the parent compound, 2. The loss of delta contributions combined with the reduced orbital overlap due to higher charges on molybdenum centers in oxidized complexes 3 and 4 is responsible for the observed increase in the length of the Mo-Mo bond.

author list (cited authors)

  • Bera, J. K., Szalay, P. S., & Dunbar, K. R.

publication date

  • January 1, 2002 11:11 AM