Log-algebraic identities on Drinfeld modules and special L-values uri icon

abstract

  • 2018 London Mathematical Society We formulate and prove a log-algebraicity theorem for arbitrary rank Drinfeld modules defined over the polynomial ring Fq[]. This generalizes results of Anderson for the rank 1 case. As an application we show that certain special values of Goss L-functions are linear forms in Drinfeld logarithms and are transcendental.

published proceedings

  • JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES

altmetric score

  • 0.5

author list (cited authors)

  • Chang, C., El-Guindy, A., & Papanikolas, M. A.

citation count

  • 5

complete list of authors

  • Chang, Chieh-Yu||El-Guindy, Ahmad||Papanikolas, Matthew A

publication date

  • April 2018

publisher