Fluoride ion complexation by a B 2 /Hg heteronuclear tridentate lewis acid Conference Paper uri icon

abstract

  • The reaction of [Li(THF)(4)][1,8-mu-(Mes(2)B)C(10)H(6)] with HgCl(2) affords [1,1'-(Hg)-[8-(Mes(2)B)C(10)H(6)](2)] () or [1-(ClHg)-8-(Mes(2)B)C(10)H(6)] (), depending on the stoichiometry of the reagents. These two new compounds have been characterized by (1)H, (13)C, (11)B and (199)Hg NMR, elemental analysis and X-ray crystallography. The cyclic voltammogram of in THF shows two distinct waves observed at E(1/2) -2.31 V and -2.61 V, corresponding to the sequential reductions of the two boron centers. Fluoride titration experiments monitored by electrochemistry suggest that binds tightly to one fluoride anion and more loosely to a second one. Theses conclusions have been confirmed by a UV-vis titration experiment which indicates that the first fluoride binding constant (K(1)) is greater than 10(8) M(-1) while the second (K(2)) equals 5.2 (+/- 0.4) x 10(3) M(-1). The fluoride binding properties of have been compared to those of [1-(Me(2)B)-8-(Mes(2)B)C(10)H(6)] () and [1-((2,6-Me(2)-4-Me(2)NC(6)H(2))Hg)-8-(Mes(2)B)C(10)H(6)] (). Both experimental and computational results indicate that its affinity for fluoride anions is comparable to that of but significantly lower than that of the diborane . In particular, the fluoride binding constants of , and in chloroform are respectively equal to 5.0 (+/- 0.2) x 10(5) M(-1), 1.0 (+/- 0.2) x 10(3) M(-1) and 1.7 (+/- 0.1) x 10(3) M(-1). Determination of the crystal structures of the fluoride adducts [S(NMe(2))(3)][-mu(2)-F] and [S(NMe(2))(3)][-mu(2)-F] along with computational results indicate that the higher fluoride binding constant of arises from a strong chelate effect involving two fluorophilic boron centers.

author list (cited authors)

  • Dorsey, C. L., Jewula, P., Hudnall, T. W., Hoefelmeyer, J. D., Taylor, T. J., Honesty, N. R., ... Gabba├», F. P.

citation count

  • 43

publication date

  • July 2008