Elucidating the Influence of Local Structure Perturbations on the Metal-Insulator Transitions of V1-xMoxO2 Nanowires: Mechanistic Insights from an X-ray Absorption Spectroscopy Study Academic Article uri icon

abstract

  • The substitutional doping of Mo within VO 2 substantially alters the electronic and structural phase diagrams of the host lattice, most notably by bringing the technologically relevant metal-insulator phase transition temperature in closer proximity to room temperature. Here, we have used X-ray absorption fine structure (XAFS) spectroscopy at V and Mo K-edges to examine the local electronic and geometric structure of both the dopant atoms and the host lattice. A nominal Mo oxidation state of +5 has been determined, which implies electron doping of the VO 2 band structure. In addition, XAFS studies suggest that doping with Mo creates locally symmetric domains that are more akin to the high-temperature rutile phase of VO 2, thereby lowering activation energy barriers for structural transformation to the metallic phase. Substantial rectification of octahedral canting is also observed upon Mo doping, which has the effect of decreasing V 3d-O 2p hybridization and likely assists in closing the characteristic band gap of the low-temperature monoclinic phase. A correlated set of cationic interactions is seen to emerge with increasing Mo doping, which can be ascribed to local dimerization along the rutile c axis as has been proposed to be a characteristic structural feature of a correlated metallic phase with intermediate mass. 2012 American Chemical Society.

published proceedings

  • JOURNAL OF PHYSICAL CHEMISTRY C

altmetric score

  • 0.25

author list (cited authors)

  • Patridge, C. J., Whittaker, L., Ravel, B., & Banerjee, S.

citation count

  • 64

complete list of authors

  • Patridge, Christopher J||Whittaker, Luisa||Ravel, Bruce||Banerjee, Sarbajit

publication date

  • February 2012