Gnotobiotic IL-10−/−; NF-κBEGFP Mice Develop Rapid and Severe Colitis Following Campylobacter jejuni Infection Academic Article uri icon

abstract

  • Limited information is available on the molecular mechanisms associated with Campylobacter jejuni (C. jejuni) induced food-borne diarrheal illnesses. In this study, we investigated the function of TLR/NF-kappaB signaling in C. jejuni induced pathogenesis using gnotobiotic IL-10(-/-); NF-kappaB(EGFP) mice. In vitro analysis showed that C. jejuni induced IkappaB phosphorylation, followed by enhanced NF-kappaB transcriptional activity and increased IL-6, MIP-2alpha and NOD2 mRNA accumulation in infected-mouse colonic epithelial cells CMT93. Importantly, these events were blocked by molecular delivery of an IkappaB inhibitor (Ad5IkappaBAA). NF-kappaB signalling was also important for C.jejuni-induced cytokine gene expression in bone marrow-derived dendritic cells. Importantly, C. jejuni associated IL-10(-/-); NF-kappaB(EGFP) mice developed mild (day 5) and severe (day 14) ulcerating colonic inflammation and bloody diarrhea as assessed by colonoscopy and histological analysis. Macroscopic analysis showed elevated EGFP expression indicating NF-kappaB activation throughout the colon of C. jejuni associated IL-10(-/-); NF-kappaB(EGFP) mice, while fluorescence microscopy revealed EGFP positive cells to be exclusively located in lamina propria mononuclear cells. Pharmacological NF-kappaB inhibition using Bay 11-7085 did not ameliorate C. jejuni induced colonic inflammation. Our findings indicate that C. jejuni induces rapid and severe intestinal inflammation in a susceptible host that correlates with enhanced NF-kappaB activity from lamina propria immune cells.

author list (cited authors)

  • Lippert, E., Karrasch, T., Sun, X., Allard, B., Herfarth, H. H., Threadgill, D., & Jobin, C.

citation count

  • 36

publication date

  • October 2009