Gnotobiotic IL-10; NF-kappaB mice develop rapid and severe colitis following Campylobacter jejuni infection.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Limited information is available on the molecular mechanisms associated with Campylobacter jejuni (C. jejuni) induced food-borne diarrheal illnesses. In this study, we investigated the function of TLR/NF-kappaB signaling in C. jejuni induced pathogenesis using gnotobiotic IL-10(-/-); NF-kappaB(EGFP) mice. In vitro analysis showed that C. jejuni induced IkappaB phosphorylation, followed by enhanced NF-kappaB transcriptional activity and increased IL-6, MIP-2alpha and NOD2 mRNA accumulation in infected-mouse colonic epithelial cells CMT93. Importantly, these events were blocked by molecular delivery of an IkappaB inhibitor (Ad5IkappaBAA). NF-kappaB signalling was also important for C.jejuni-induced cytokine gene expression in bone marrow-derived dendritic cells. Importantly, C. jejuni associated IL-10(-/-); NF-kappaB(EGFP) mice developed mild (day 5) and severe (day 14) ulcerating colonic inflammation and bloody diarrhea as assessed by colonoscopy and histological analysis. Macroscopic analysis showed elevated EGFP expression indicating NF-kappaB activation throughout the colon of C. jejuni associated IL-10(-/-); NF-kappaB(EGFP) mice, while fluorescence microscopy revealed EGFP positive cells to be exclusively located in lamina propria mononuclear cells. Pharmacological NF-kappaB inhibition using Bay 11-7085 did not ameliorate C. jejuni induced colonic inflammation. Our findings indicate that C. jejuni induces rapid and severe intestinal inflammation in a susceptible host that correlates with enhanced NF-kappaB activity from lamina propria immune cells.