Coordination dynamics of trajectory formation Academic Article uri icon

abstract

  • The present study aims to understand the neurally based coordination dynamics (multistability, loss of stability, transitions, etc.) of trajectory formation in a simple task. Six subjects produced two spatial patterns of coordination in the xy plane by alternating the abduction-adduction and flexion-extension motions of their right index finger. Each pattern was characterized by a unique temporal ratio between the x and y directions of motion: (1) a figure zero, a 1:1 temporal pattern; and (2) a figure eight, a 2:1 temporal pattern. The patterns were produced rhythmically and movement frequency was scaled across ten frequency plateaus, with ten cycles of motion per step. As movement frequency increased, switching from a figure eight to a figure zero was observed at critical cycling frequencies. The switch from pattern (2) to pattern (1) was identified in the spatial trajectory and power spectra of x(t) and y(t). En route to the transition, enhancement of fluctuations was observed in the Fourier amplitudes of x(t) and y(t), specifically at f0 (the metronome frequency) and 2f0 (the first harmonic of f0). Interestingly, there was no difference in the spatial variability of the two patterns. Overall, the data demonstrate that spatial patterns of coordination can be characterized in terms of the temporal relationship between the spatial components of the trajectory itself. We discuss the experimental findings in relation to other end-point planning and multijoint control strategies, as well as the much more general problem of temporal synchronization in many interlimb and intralimb coordination tasks.

author list (cited authors)

  • Buchanan, J. J., Kelso, J., & Fuchs, A.

citation count

  • 28

publication date

  • January 1996