Influences of chemical sympathectomy and simulated weightlessness on male and female rats.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Maximum oxygen consumption (VO2max) has been shown to be reduced after periods of simulated weightlessness. To assess the role of the sympathetic nervous system in these reductions, Sprague-Dawley rats were either chemically sympathectomized (SYMX) or injected with saline (SHAM) and assigned to head-down suspension (HDS), horizontal restraint with the hindlimbs weight bearing (HWB), or cage-control (CC) conditions. VO2max, run time (RT), and mechanical efficiency (ME) were measured before suspension and on days 7 and 14. Male and female SHAM HDS groups exhibited reduced measures of VO2max (12-13%) after 7 and 14 days, and this decrease was attenuated in the SYMX and HWB rats. HDS resulted in a significant reduction in RT (9-15%) in both the male and female rats, and ME was significantly reduced after HDS in male and female SYMX and male SHAM rats (23-33%) but not in the female SHAM rats. Lesser reductions in ME were observed in the HWB rats. HDS and HWB were associated with lower body, fat-free, and fat masses, which were similar in male and female rats as well as for the SHAM and SYMX conditions. In a related HDS experiment with normal rats, plasma norepinephrine and epinephrine were increased by 53 and 42% after 7 days, but only epinephrine returned to baseline after 14 days. It was concluded that chemical sympathectomy and/or a weight-bearing stimulus will attenuate the loss in VO2max associated with simulated weightlessness in rats despite similar changes in body mass and composition. The mechanism(s) remains unclear at this time.