Reversible On-Off Switching of a Single-Molecule Magnet via a Crystal-to-Crystal Chemical Transformation.
Academic Article
Overview
Identity
Additional Document Info
View All
Overview
abstract
Dynamic molecular crystals are of high interest due to their potential applications. Herein we report the reversible on-off switching of single-molecule magnet (SMM) behavior in a [Mo(CN)7]4- based molecular compound. Upon dehydration and rehydration, the trinuclear Mn2Mo molecule [Mn(L)(H2O)]2[Mo(CN)7]2H2O (1) undergoes reversible crystal-to-crystal transformation to a hexanuclear Mn4Mo2 compound [Mn(L)(H2O)]2[Mn(L)]2[Mo(CN)7]2 (2). This structural transformation involves the breaking and reforming of coordination bonds which leads to significant changes in the color and magnetic properties. Compound 1 is an SMM with an energy barrier of 44.9 cm-1, whereas 2 behaves as a simple paramagnet despite its higher ground state spin value. The distortion of the pentagonal bipyramidal geometry of [Mo(CN)7]4- in 2 disrupts the anisotropic exchange interactions that lead to SMM behavior in 1.