Assessing soil residual stresses and their impact on cracking behavior Conference Paper uri icon

abstract

  • Residual stresses develop in soils as they shrink or swell. Assessing those stresses has always been an active area of research in soil science. Shrinkage induced cracking is a phenomenon that develops in soils as result of residual tensile stresses generation in soil structure. This paper presents a method to assess residual effective stresses in soil in an attempt to link the residual stress to soil dynamic properties as a function to water content. Relating stresses to soil water content would contribute to the understanding of various stress-related phenomena, an application of which is to physically characterize shrinkage induced cracking behavior of soils. The objective of this paper is to assess soil shrinkage-induced stresses and to study the impact of these stresses on crack behavior of soil during shrinkage. The Restrained Ring Method is introduced as an approach to measure, as function of soil water content, (1) the effective residual stresses in soils, (2) soil tensile stresses and (3) soil effective modulus of elasticity, E eff. An analytical solution using elasticity theory was applied to estimate those parameters using experimental results. A silty clay loam soil was tested and results for the soil effective residual stresses, its tensile stresses, and its effective modulus of elasticity, E eff were provided. Obtained results were compared to ranges from the literature and showed good correlation.

published proceedings

  • 2007 ASABE Annual International Meeting, Technical Papers

author list (cited authors)

  • Abou Najm, M., Mohtar, R., Weiss, W. J., & Braudeau, E.

complete list of authors

  • Abou Najm, M||Mohtar, R||Weiss, WJ||Braudeau, E

publication date

  • November 2007